ANOMALOUS HYDRIDE REDUCTION OF HEXAMETHYLDEWARBENZENE EPOXIDE. $1,2,3,4,5,6$ -HEXAMETHYL-TRICYCLOI 2.2.0.0^{2,6}1HEXAN-3-OL

> Grant R. Krow and James Reilly Department of Chemistry, Temple University, Phila., Pa. 19122

(Received in **USA** 17 February 1975; received in UK for publloation 1 April 1975)

Hexamethyldewarbenzene $\frac{1}{k}$ is the precursor of several strained bicyclic alcohols $2-\frac{1}{k}$ whose molecular formulae correspond to hydration of the parent hydrocarbon. Marked isomeric selectivity in the syntheses of $2-\frac{1}{2}$ has been obtained by appropriate choices of synthetic sequences. Starting with $\frac{1}{k}$ the alcohol $\frac{2}{k}$ has been prepared with mercuric acetate/sodium borohydride", alcohol 3 with HCl followed by ethamolic KOH workup", and alcohol 4 with diborane/ hydrogen peroxide". Alcohol 4 has also been synthesized by oxidation of 1 with peracid to give epoxide 5 followed by reduction of 5 with lithium metal³. We wish to report (1) selective syntheses of bicyclic alcohol 3 and a new alcohol 1,2,3,4,5,6-hexamethyltricyclo[2.2.0.0^{2,6}]hexan-j-ol ζ , and (2) a comparison of the hydride reductions of hexamethyldewarbenzene epoxide 5 with the anomalous hydride reduction⁵ of cyclobutene epoxide μ .

Hexamethyldewarbenzene epoxide $\frac{5}{\sqrt{2}}$ was reacted with excess lithium aluminum hydride or aluminum hydride under the conditions shown in Table 1 to afford compounds $3,6$, and 7 , shown in Scheme 1. Compound β was identified by spectral comparison with an authentic sample². Alcohol $5,$ mp 55-56.5 $^{\circ}$, was identified via its spectral parameters, ir (CCl₁) 3520 cm $^{-1}$; pmr spectrum (CDC_3) 60.80 (s,3), 0.98 (s,3), 1.07 (s,6), 1.34 (s,3), 1.13 (d, J=6.5Hz, C₅-methyl), 2.12 (q, J=6.5Hz, H₅), 1.50 (OH); Eu(dpm)₃ shift ratio for H₅/C₅-methyl protons equals 1.95⁶. Ketone 7, 2,4-dinitrophenylhydrazone mp $163-164.5^{\circ}$ (ethyl acetate), was also identified via spectral data; ir (CC1₁) 1710 cm⁻¹; pmr (CDC1₃) 60.86 (t, J=6Hz, 6), 1.00 (s,3), 1.48 (m, J=1Hz, 3), 1.63 (m, J=1Hz, 3), 2.01 (s, 3), 2.54 (m, 2 allylic protons); irradiation at δ 2.54 collapses the δ 0.86 triplet to two singlets at 60.90 and 60.83 . The slight chemical shift difference indicates a <u>trans</u> relationship of these methyl groups in \mathcal{J} , since they would be equivalent in the c<u>is</u> isomer by virtue of a molecular plane of symmetry.

THF= tetrahydrofuran, (a) Glpc $(2m \times 1/4" 10\% 00550$ on Chrom W at 110°) and pmr of crude reaction mixtures, (b) 20% reduction, (c) complex mixture of products, (d) complete reduction, (e) N. M. Yoon and H. C. Brown, J. Amer. Chem. Soc., 90 , 2927 (1968), (f) fuming sulfuric acid, i.e. $65%$ SO₃.

A mechanism which accounts for formation of products is shown in Scheme 1. Initial nucleophilic attack by hydride on epoxide 5 is blocked by endo methyl groups. Epoxide 5 ring opening can be facilitated, however, by coordination of oxygen with an electrophilic hydride reducing agent⁵ or associated Lewis acid. Opening of epoxide $\frac{5}{2}$ by an electrophile should lead readily to the bicyclo[2.1.1] hexenyl cation β^7 . This cation can by attacked by nucleophile at C₆ to yield alcohol 3 on workup^{7,8}. Under other conditions attack from the endo position at C_2 can lead to intermediate $2^{7,8}$. Basic quenching of ion 2 leads without rearrangement to alcohol 6. Neutral aqueous quenching of β affords in addition to β the less strained ringopened ketone \mathcal{I} . Formally, ketone \mathcal{I} is derived by protonation of φ at a cyclopropyl carbon during or following bond reorganization.

Ion 2^7 has previously been trapped by attack of hydroxide ion at C_2 from an endo direction. Similar attack on 8 by a hydride nucleophile would result in alcohol 6 with the stereochemistry

shown. The observed lanthanide pmr shift ratio for the proton $\frac{H_5}{0}$ versus the C_5 -methyl proton is qualitatively consistent with this structural assignment⁹.

The mode of structural rearrangement during the hydride reduction of epoxide 5 can be contrasted with rearrangement during the anomalous hydride reduction⁵ of cyclobutene epoxide 10 shown in Scheme 2. The cyclobutane alkoxide $\frac{11}{20}$, formed by nucleophilic attack on 10 with epoxide ring opening, undergoes ring cleavage to give carbanion 12 . Further reduction and hydrolytic workup gives $\frac{1}{\sqrt{2}}$. The importance of ring strain in the opening of alkoxide $\frac{1}{2}$, suggested to us that the strain inherent in alkoxide ϱ might result in ring opening to a carbanion such as $\frac{1}{n}$. Such a cleavage process was not observed with AlH₃; and, although the vigorous reaction conditions used for the LiAlH₄ reductions resulted in observation of eight or more products by glpc, the major products \oint and \vec{l} were formed during hydrolytic workup from unrearranged \vec{l} .

Scheme 2

E= electrophile

FOOTNOTES AND REFERENCES

- (1) E. Müller, Chem. Ber., 106 , 3920 (1973).
- (2) H. Hogeveen and P. W. Kwant, Tetrahedron Lett., 1972 , 5357.
- (3) L. A. Paquette, S. A. Lang, Jr., S. K. Porter, and J. Clardy, ibid., 1972 , 3141 .
- (4) H. N. Junker, W. Schaffer, and N. Niedenbruck, Chem. Ber., 100, 2508 (1967).
- (5) L. A. Paquette, A. A. Youssef, M. L. Wise, <u>J. Amer. Chem</u>. Soc., 89, 5246 (1967); A. C. Cope and R. W. Gleason, ibid., $\frac{\partial \mu}{\partial y}$, 1928 (1962).
- (6) Shift ratios were determined using the ratio of slopes obtained by plotting lanthanide induced shift versus lanthanide/ \oint mole ratios between 0.1 and 0.6.
- (7) H. Hogeveen and P. W. Kwant. $\underline{jbid.}$. φ , 7315 (1973), note especially refs. 1-8 therein.
- (8) H. Hogeveen, P. W. Kwant, and J. Thio, Rec. Trav. Chim., 23 , 152 (1974).
- (9) The H₅ endo hydrogen in 6 is closer to an exo hydroxyl substituent than is the C₅-methyl group in an <u>exo</u> position. In the <u>endo</u> C₅-methyl isomer this situation is reversed. In the model compound isoborneol (exo-hydroxyl) the more remote H_6 exo proton is shifted less than the closer H_6 endo proton 10 . Based on measurements of internuclear oxygenproton distances, the magnitude of the shift ratio for the $c_5^{}$ substituents in $\mathfrak h$ appears to be inconsistent with an endo hydroxyl group.
- (10) G. E. Hawkes, D. Leibfritz, D. W. Roberts, J. D. Roberts, J. Amer. Chem. Soc., 95 , 1659 (1973).