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Hexamethyldewarbenzene ] is the precursor of several strained bicyclic aleohols g—%
whose molecular formulae correspond to hydration of the parent hydrocarbon. Marked isomeric
selectivity in the syntheses of g-k has been obtained by appropriate choices of synthetic
sequences. Starting with ] the alcohol 2 has been prepared with mercuric acetate/sodium boro-
hydridel, alcohol 3 with HC1l followed by ethanoiic KOH workupa, and alcohol e with diborane/
hydrogen peroxide3. Alcohol & has also been synthesized by oxidation of p3 with peracidh to
give epoxide § followed by reduction of 5 with lithium metal3. We wish to report (1) selective
syntheses of bicyclic alcohol 3 and a new alcohol 1,2,3,h,5,6-hexamethy1tricyclo[2.2.0.02’6]_
hexan-3-ol §, and (2) a comparison of the hydride reductions of hexamethyldewarbenzene epoxide
2 with the anomalous hydride reduction5 of cyclobutene epoxide 10
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Hexamethyldewarbenzene epoxide 2“ was reacted with excess lithium aluminum hydride or al-
uminum hydride under the conditions shown in Table 1 to afford compounds é,é, and z, shown in
Scheme 1. Compound % was identified by spectral comparison with an authentic sample2. Alcohol
é, mp 55-56.5°, was identified via its spectrsl parameters, ir (CClh) 3520 cm—l; pmr spectrum
(coe1,) 60.80 (s,3), 0.98 (s,3), 1.07 (s,6), 1.3k (s,3), 1.13 (4, J=6.5Hz, Cg-methyl), 2.12 (a,
J=6.5Hz, HS)’ 1.50 (OH); Eu(dpm)3 shift ratio for H5/Cs-methyl protons equals 1.956. Ketone 1,
2,h-dinitrophenylhydrazone mp 163-16L.5° (ethyl acetate), was also identified via spectral data;
ir (cc1h) 1710 cm‘l; pmr (CDC13) 5§0.86 (t, J=6Hz, 6}, 1.00 (s,3), 1.48 (m, J=1Hz, 3), 1.63 (m,
J=1Hz, 3), 2.01 (s, 3), 2.54 (m, 2 allylic protons); irradiation at §2.54 collapses the §0.86
triplet to two singlets at §0.90 and §0.83. The slight chemical shift difference indicates a
trans relationship of these methyl groups in I, since they would be equivalent in the cis iso-

mer by virtue of a molecular plane of symmetry.

Table 1, Hydride Reductions of Epoxide 2.

Reducing agent Conditions Workup Major products (% of total product)®
LiALH, THF, reflux, two days®’C H,0 6 (s0%) 7 (0%
LiAlH), THF, 130°, sealed tube, H,0 6 (og) T (uo%)
one dayc’d
ME, (LiAlH / THF/ether, 0-4°, 3ard H,0 6 (b78) 7 (53%)
e
100% stoh)
10% NaOH g (100%)
ALE, (LiA1E,/ THF/ether, 0-4°, 3nr®  15% NeOH 3 (95%)  § (5%)

oleum )

THF= tetrahydrofuran, (a) Glpe (2m x 1/4" 10% DCS550 on Chrom W at 110°) and pmr of crude
reaction mixtures, (b) 20% reduction, (c) complex mixture of products, (d) complete reduction,
{e) N. M. Yoon and H. C. Brown, J. Amer. Chem. Soc., 90, 2927 (1968), (f) fuming sulfuric acid,
i.e. 65% S0,.

A mechanism which accounts for formation of products is shown in Scheme 1. Initial nucleo-
philic attack by hydride on epoxide 2 is blocked by endo methyl groups. Epoxide é ring open-
ing can be facilitated, however, by coordination of oxygen with an electrophilic hydride re-

5

ducing sgent” or associated Lewis acid. Opening of epoxide 2 by an electrophile should lead

readily to the bicyclo[2.1.1lhexenyl cation g . This cation can by attacked by nucleophile

7,8

at 06 to yield alcohol é on workup Under other conditions attack from the endo position

at C2 can lead to intermediate 27’8. Basic quenching of ion 2 leads witPout rearrangement to
alcohol é. Neutral aqueous quenching of 2 affords in addition to é the less strained ring-
opened ketone 7. Formally, ketone 1 is derived by protonation of 9 at a cyclopropyl carbon
during or following bond reorganization.

Ion QT has previously been trapped by attack of hydroxide ion at C2 from an endo direction.

Similar attack on g by a hydride nucleophile would result in alcohol é with the stereochemistry
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shown. The observed lanthanide pmr shift ratio for the proton H5 versus the Cs—methyl proton
9

is qualitatively consistent with this structural assigmment”.
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E= electrophile, (a) A1H3, A1H3/SO3, or LiAlH,, (v) A1H3/SO3, (e) A1H3 or LiAlH),

The mode of structural rearrangement during the hydride reduction of epoxide 5 can be
contrasted with rearrangement during the anomalous hydride reduction5 of cyclobutene epoxide %8
shown in Scheme 2. The cyclobutane alkoxide %%, formed by nucleophilic attack on %2 with epox-
ide ring opening, undergoes ring cleavage to give carbanion %g. Further reduction and hydro-
lytic workup gives %é. The importance of ring strain in the opening of alkoxide %%5, suggested
to us that the strain inherent in alkoxide 2 might result in ring opening to a carbanion such
as %é. Such a cleavage process was not observed with A1H3; and, although the vigorous reaction
conditions used for the LiAlH4 reductions resulted in observation of eight or more products by

glpc, the major products Q and Z were formed during hydrolytic workup from unrearranged 2.
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Scheme 2
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